Journal of Innovative Research in Engineering Sciences

Issn:2476-7611

Article

Numerical study of the effect of channel and nano-fluid characteristics on the heat transfer parameters in triangular-quadratic and rectangular channels

Sajjad rastad, Seyed ali agha mirjalilily
Abstract

Nanosilates are a new heat transfer medium that consists of suspensions of particles usually made of metal in Nano dimensions in the base fluid. Using Nano silicates that have higher thermal conductivity and displacement coefficients compared to conventional fluids, can save energy consumption by reducing the dimensions of heat exchangers and increasing their efficiency. However, the use of Nano fluids due to increased pressure drop sometimes leads to an excessive increase in pump power, hence the theoretical review of this subject is necessary using Nano silicates in ductile, shell and tube heat exchangers. In this research, we tried to study the performance of heat exchangers with square, rectangular and triangular sections for different nan ofluid ratios. For this purpose, the parameters of the pressure drop coefficient and the non-dimensional heat transfer coefficient were investigated by modeling the converters under different geometries using Anis software. The results of this study showed that, by increasing the volume percentage of particles inside the Nano silver, the calculated Nusselt number decreased to a negligible amount. It should be noted that a small reduction in the Nusselt number does not mean a decrease in the amount of heat transfer, and because of the increase in the heat transfer coefficient in the high volumetric ratios, the amount of uncontained heat transfer has increased.

Keywords
Keyword:1- Heat exchangers
Keyword:2- Nano fluids
Keyword:3- heat transfer
Keyword:4- pressure drop

File Article

Download pdf download article

Reference

  1. Lee, S., Choi, S. S., Li, S. A., & Eastman, J. A. (1999). Measuring thermal conductivity of fluids containing oxide nanoparticles. Journal of Heat transfer121(2), 280-289. [scholar]
  2. Hamilton, R. L., & Crosser, O. K. (1962). Thermal conductivity of heterogeneous two-component systems. Industrial & Engineering chemistry fundamentals1(3), 187-191. [scholar]
  3. Bianco, V., Chiacchio, F., Manca, O., & Nardini, S. (2009). Numerical investigation of nanofluids forced convection in circular tubes. Applied Thermal Engineering29(17-18), 3632-3642. [scholar]
  4. Choi, S. U. S. (2002). Two are better than one in nanofluids, presented at the Colloquium on Micro/Nano Thermal Engineering, Seoul National University, Seoul. Korea, February17. [scholar]
  5. Keblinski, P., Phillpot, S. R., Choi, S. U. S., & Eastman, J. A. (2002). Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). International journal of heat and mass transfer45(4), 855-863. [scholar]
  6. Eastman, J. A., Choi, S. U. S., Li, S., Yu, W., & Thompson, L. J. (2001). Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Applied physics letters78(6), 718-720. [scholar]
  7. Choi, S. U. S., Singer, D. A., & Wang, H. P. (1995). Developments and applications of non-Newtonian flows. ASME FED66, 99-105. [scholar]
  8. Lee, S., Choi, S. S., Li, S. A., & Eastman, J. A. (1999). Measuring thermal conductivity of fluids containing oxide nanoparticles. Journal of Heat transfer121(2), 280-289. [scholar]
  9. Lee, S., Choi, S. S., Li, S. A., & Eastman, J. A. (1999). Measuring thermal conductivity of fluids containing oxide nanoparticles. Journal of Heat transfer121(2), 280-289. [scholar]
  10. Khanafer, K., & Vafai, K. (2011). A critical synthesis of thermophysical characteristics of nanofluids. International Journal of Heat and Mass Transfer54(19-20), 4410-4428. [scholar]
  11. Hamilton, R. L., & Crosser, O. K. (1962). Thermal conductivity of heterogeneous two-component systems. Industrial & Engineering chemistry fundamentals1(3), 187-191. [scholar]
  12. Haddad, Z., Oztop, H. F., Abu-Nada, E., & Mataoui, A. (2012). A review on natural convective heat transfer of nanofluids. Renewable and Sustainable Energy Reviews16(7), 5363-5378. [scholar]
  13. Kuznetsov, A. V., & Nield, D. A. (2014). Natural convective boundary-layer flow of a nanofluid past a vertical plate: A revised model. International Journal of Thermal Sciences77, 126-129. [scholar]
  14.  Nield, D. A., & Kuznetsov, A. V. (2009). The Cheng–Minkowycz problem for natural convective boundary-layer flow in a porous medium saturated by a nanofluid. International Journal of Heat and Mass Transfer52(25-26), 5792-5795. [scholar]
  15. Hwang, Y. J., Ahn, Y. C., Shin, H. S., Lee, C. G., Kim, G. T., Park, H. S., & Lee, J. K. (2006). Investigation on characteristics of thermal conductivity enhancement of nanofluids. Current Applied Physics6(6), 1068-1071. [scholar]
  16. Leitner, J., Sedmidubský, D., Doušová, B., Strejc, A., & Nev?iva, M. (2000). Heat capacity of CuO in the temperature range of 298.15–1300 K. Thermochimica Acta348(1-2), 49-51. [scholar]
  17. Sadeghi, M., Thomassie, R., & Sasangohar, F. (2017, June). Objective Assessment of Patient Portal Requirements. In Proceedings of the International Symposium on Human Factors and Ergonomics in Health Care (Vol. 6, No. 1, pp. 1-1). Sage India: New Delhi, India: SAGE Publications. [scholar]
  18. Khanade, K., Sasangohar, F., Sadeghi, M., Sutherland, S., & Alexander, K. (2017, September). Deriving Information Requirements for a Smart Nursing System for Intensive Care Units. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting (Vol. 61, No. 1, pp. 653-654). Sage CA: Los Angeles, CA: SAGE Publications. [scholar]
  19. Sadeghi, M., Thomassie, R., & Sasangohar, F. (2017, September). Objective Assessment of Functional Information Requirements for Patient Portals. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting (Vol. 61, No. 1, pp. 1788-1792). Sage CA: Los Angeles, CA: SAGE Publications. [scholar]
  20. Sadeghi, M., & Sasangohar, F. (2018, September). Investigating Nursing Task Interruptions in Intensive Care Units: A Scoping Literature Review. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting (Vol. 62, No. 1, pp. 478-479). Sage CA: Los Angeles, CA: SAGE Publications. [scholar]
  21. Sadeghi, M., Khanade, K., Sasangohar, F., & Sutherland, S. C. (2018, September). Design of a Wearable Stress Monitoring Tool for Intensive Care Unit Nursing: Functional Information Requirements Analysis. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting (Vol. 62, No. 1, pp. 1348-1352). Sage CA: Los Angeles, CA: SAGE Publications. [scholar]