Journal of Innovative Research in Engineering Sciences



Fabrication of PVA/GO nanofibers by electrospinning process for the removal of lead (II) and copper (II) ions from aqueous solutions

Farnoosh Rezaeifard

In the present study, the poly (vinyl alcohol)//graphene oxide Nano sheets (PVA/GO) were successfully synthesized via electrospinning process and its application for the removal of lead (II) and copper (II) ions was investigated in a batch system.The graphiteNano sheets were also modified by HCl and H2SO4. The synthesized Nano fibrousadsorbents were characterized usingscanning electron microscopy (SEM),X-ray powder diffraction (XRD), and Brunauer–Emmett–Teller (BET) analysis. The effect of sorption parameters including pH, contact time and initial concentration on the removal of lead (II) and copper (II) ions by the Nano fibrous samples were investigated. The known pseudo-first-order and pseudo-second-order kinetic models were applied to describe the kinetic data of metal ions. The Freundlich and Langmuir isotherm models were used to describe the equilibrium data of metal ions sorption. The both copper and lead experimental data were well described using pseudo-second-order kinetic and Langmuir isotherm models. The obtained results indicated that PVA/GO nanofibers can be considered as an efficient adsorbent for the removal heavy metal ions.

Keyword:1- PVA
Keyword:2- Graphene oxide,Nanofiber
Keyword:3- Adsorption Lead
Keyword:4- Copper

File Article

Download pdf download article


  1. Nooney, R. I., Kalyanaraman, M., Kennedy, G., & Maginn, E. J. (2001). Heavy metal remediation using functionalized mesoporous silicas with controlled macrostructure. Langmuir17(2), 528-533.[Scholar]
  2. Irani, M., Amjadi, M., & Mousavian, M. A. (2011). Comparative study of lead sorption onto natural perlite, dolomite and diatomite. Chemical Engineering Journal178, 317-323. [Scholar]
  3. Shi, T., Jia, S., Chen, Y., Wen, Y., Du, C., Guo, H., & Wang, Z. (2009). Adsorption of Pb (II), Cr (III), Cu (II), Cd (II) and Ni (II) onto a vanadium mine tailing from aqueous solution. Journal of hazardous materials169(1-3), 838-846. [Scholar]
  4. Ajiwe, V. I. E., & Anyadiegwu, I. E. (2000). Recovery of silver from industrial wastes, cassava solution effects. Separation and Purification Technology18(2), 89-92. [Scholar]
  5. Liu, J., Valsaraj, K. T., Devai, I., & DeLaune, R. D. (2008). Immobilization of aqueous Hg (II) by mackinawite (FeS). Journal of hazardous materials157(2-3), 432-440. [Scholar]
  6. Matlock, M. M., Howerton, B. S., & Atwood, D. A. (2002). Chemical precipitation of lead from lead battery recycling plant wastewater. Industrial & engineering chemistry research41(6), 1579-1582. [Scholar]
  7. Barron-Zambrano, J., Laborie, S., Viers, P., Rakib, M., & Durand, G. (2004). Mercury removal and recovery from aqueous solutions by coupled complexation–ultrafiltration and electrolysis. Journal of membrane science229(1-2), 179-186. [Scholar]
  8. Irani, M., Mousavian, M. A., & Keshtkar, A. R. Adsorption of Lead from aqueous solutions using natural diatomite. [Scholar]
  9. Reddy, B. R., & Priya, D. N. (2006). Chloride leaching and solvent extraction of cadmium, cobalt and nickel from spent nickel–cadmium, batteries using Cyanex 923 and 272. Journal of Power Sources161(2), 1428-1434. [Scholar]
  10. Irani, M., Amjadi, M., & Mousavian, M. A. (2011). Comparative study of lead sorption onto natural perlite, dolomite and diatomite. Chemical Engineering Journal178, 317-323. [Scholar]
  11. Beheshti, H., Irani, M., Hosseini, L., Rahimi, A., & Aliabadi, M. (2016). Removal of Cr (VI) from aqueous solutions using chitosan/MWCNT/Fe3O4 composite nanofibers-batch and column studies. Chemical Engineering Journal284, 557-564. [Scholar]
  12. Razzaz, A., Ghorban, S., Hosayni, L., Irani, M., & Aliabadi, M. (2016). Chitosan nanofibers functionalized by TiO2 nanoparticles for the removal of heavy metal ions. Journal of the Taiwan Institute of Chemical Engineers58, 333-343. [Scholar]
  13. Alipour, D., Keshtkar, A. R., & Moosavian, M. A. (2016). Adsorption of thorium (IV) from simulated radioactive solutions using a novel electrospun PVA/TiO2/ZnO nanofiber adsorbent functionalized with mercapto groups: Study in single and multi-component systems. Applied Surface Science366, 19-29. [Scholar]
  14. HadiNajafabadi, H., Irani, M., RoshanfekrRad, L., HeydariHaratameh, A., & Haririan, I. (2015). Removal of Cu2+, Pb2+ and Cr6+ from aqueous solutions using a chitosan/graphene oxide composite nanofibrous adsorbent. RSC ADVANCES5(21), 16532-16539. [Scholar]
  15. Islam, M. S., Rahaman, M. S., & Yeum, J. H. (2015). Phosphine-functionalized electrospun poly (vinyl alcohol)/silica nanofibers as highly effective adsorbent for removal of aqueous manganese and nickel ions. Colloids and Surfaces A: Physicochemical and Engineering Aspects484, 9-18. [Scholar]
  16. Zhao, G., Li, J., Ren, X., Chen, C., & Wang, X. (2011). Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management. Environmental science & technology45(24), 10454-10462. [Scholar]
  17. Srinivasan, M., Ferraris, C., & White, T. (2006). Cadmium and lead ion capture with three dimensionally ordered macroporous hydroxyapatite. Environmental science & technology40(22), 7054-7059. [Scholar]
  18. Zhang, H., & Selim, H. M. (2005). Kinetics of arsenate adsorption− desorption in soils. Environmental Science & Technology39(16), 6101-6108. [Scholar]
  19. Jeon, C., & Höll, W. H. (2003). Chemical modification of chitosan and equilibrium study for mercury ion removal. Water Research37(19), 4770-4780. [Scholar]
  20. Keshtkar, A. R., Irani, M., & Moosavian, M. A. (2013). Comparative study on PVA/silica membrane functionalized with mercapto and amine groups for adsorption of Cu (II) from aqueous solutions. Journal of the Taiwan Institute of Chemical Engineers44(2), 279-286. [Scholar]
  21. Wang, H., Yuan, X., Wu, Y., Chen, X., Leng, L., Wang, H., ... & Zeng, G. (2015). Facile synthesis of polypyrrole decorated reduced graphene oxide–Fe3O4 magnetic composites and its application for the Cr (VI) removal. Chemical Engineering Journal262, 597-606. [Scholar]
  22. Cui, L., Guo, X., Wei, Q., Wang, Y., Gao, L., Yan, L., ... & Du, B. (2015). Removal of mercury and methylene blue from aqueous solution by xanthate functionalized magnetic graphene oxide: sorption kinetic and uptake mechanism. Journal of colloid and interface science439, 112-120. [Scholar]
  23. Guo, X., Du, B., Wei, Q., Yang, J., Hu, L., Yan, L., Xu, W.  Synthesis of amino functionalized magnetic graphenes composite material and its application to remove Cr (VI), Pb (II), Hg (II), Cd (II) and Ni (II) from contaminated water, J. Hazard. Mater, 2014. [Scholar]
  24. Madadrang, C. J., Kim, H. Y., Gao, G., Wang, N., Zhu, J., Feng, H., ... & Hou, S. (2012). Adsorption behavior of EDTA-graphene oxide for Pb (II) removal. ACS applied materials & interfaces4(3), 1186-1193. [Scholar]
  25. Cui, L., Wang, Y., Gao, L., Hu, L., Yan, L., Wei, Q., & Du, B. (2015). EDTA functionalized magnetic graphene oxide for removal of Pb (II), Hg (II) and Cu (II) in water treatment: Adsorption mechanism and separation property. Chemical engineering journal281, 1-10. [Scholar]
  26. Sun, L., Yu, H., & Fugetsu, B. (2012). Graphene oxide adsorption enhanced by in situ reduction with sodium hydrosulfite to remove acridine orange from aqueous solution. Journal of hazardous materials203, 101-110.. [Scholar]
  27. Lagergren, S. (1898). Zur theorie der sogenannten adsorption geloster stoffe. Kungliga svenska vetenskapsakademiens. Handlingar24, 1-39. [Scholar]
  28. Ho, Y. S., & McKay, G. (1999). Pseudo-second order model for sorption processes. Process biochemistry34(5), 451-465. [Scholar]
  29. Langmuir, I. (1916). The constitution and fundamental properties of solids and liquids. Part I. Solids. Journal of the American chemical society38(11), 2221-2295. [Scholar]
  30. Ho, Y. S. (2006). Isotherms for the sorption of lead onto peat: comparison of linear and non-linear methods. Polish journal of environmental studies15(1). [Scholar]